Today (10/26/01)

- Today
- Walk through the lead filter design exercise 10
- Nyquist plot
- Ref. 6.3
- Reading Assignment: 6.5

Lead Design Procedure

Given $G(s)$:

- Determine open loop gain K to meet low freq gain requirement ($K G(0)$) and/or bandwidth requirement (BW $K G(s)$ about $1 / 2$ of desired closed loop BW). Gain crossover freq $=\omega_{\mathrm{cg}}$.
- Evaluate PM of $K G(s)$. Determine extra phase lead needed, set it to $\phi_{\text {max }}$.
- Determine α. Find the new gain crossover freq $\omega_{\mathrm{cg1}} K G\left(j \omega_{\mathrm{cg}}\right)=(\sqrt{\alpha})_{\mathrm{ab}}$
- Let $\omega_{\max }=\omega_{\mathrm{cg} 1}$ and solve for T.
- Check PM, BW of $G(s) K_{\text {lead }}(s)$ and iterate if necessary.
- Check all other specifications, and iterate design; add more lead compensators if necessary.

Lead Design Procedure

Given $G(s)=1 /\left(s^{2}+a s\right)$:

- Determine open loop gain K to meet low freq gain requirement ($K G(0)$) and/or bandwidth requirement (BW KG(s) about $1 / 2$ of desired closed loop BW). Gain crossover freq $=\omega_{\mathrm{cg}}$.

- lead needed, set it to

Choose
$\mathrm{K}=\mathbf{2 8 . 9 \mathrm { dB }}=\mathbf{2 8}$
cessary.
sign; add more lead

Lead Design Procedure

- Evaluate PM of $K G(s)$. Determine extra phase lead needed, set it to $\phi_{\text {max }}{ }$.

Target $\mathrm{PM}=60 \mathrm{deg}$, so we need 35deg from lead filter. Add 5 deg extra pad.

$\phi_{\text {max }}=40 \mathrm{deg}=.684 \mathrm{rad}$ $\alpha=.225$ extra gain from lead filter at $\omega_{\text {max }}$ $=(\sqrt{\alpha})_{\mathrm{dB}}=6.47 \mathrm{~dB}$

Lead Design Procedure

- Determine α. Find the new gain crossover freq $\omega_{\mathrm{cg} 1}$

ne New crossover freq de: @ 7.5rad/sec.

Substitute $\omega_{\text {max }}=7.5 \mathrm{rad} / \mathrm{sec}$ into
$T=1 / \omega_{\max } \sqrt{\alpha}$
we get $T=.28$

Overall lead filter:

$$
K_{\text {lead }}(s)=124.2 \frac{s+3.56}{s+15.79}
$$

Lead Design Procedure

- Check PM, BW of $G(s) K_{\text {lead }}(s)$ and iterate if necessary.

Not quite meeting the spec, so iterate!

Change $\phi_{\text {max }}=50^{\circ}$ and $\omega_{\text {max }}=10 \mathrm{rad} / \mathrm{sec}$

Overall lead filter:
$K_{\text {lead }}(s)=202.4 \frac{s+3.72}{s+26.89}$

Lead Design Procedure

- Check PM, BW of $G(s) K_{\text {lead }}(s)$ and iterate if necessary.

More PM than we need, so increase the gain a bit.

Overall lead filter:
$K_{\text {lead }}(s)=303.7 \frac{s+3.72}{s+26.89}$

Principle of Argument

Let $Z=\#$ of zeros of $F(s)$ enclosed by $\Gamma, P=\#$ of poles of $F(s)$ enclosed by Γ.

Then \# of counterclockwise (CCW) encirclement of origin of F-plane by $\boldsymbol{F}(\Gamma)=P-Z$

Nyquist Stability Criterion

Choose:

- Γ encloses the entire right half complex plane
- $F(s)=1+L(s)$

Then

- $Z=$ \# of unstable zeros of $1+L(s)$
$=0$ if the closed loop system is stable
- $P=$ \# of unstable poles of $1+L(s)$
= \# of open loop unstable poles (\# of unstable poles in $L(s)$)
From the Principle of Argument,
closed loop system is stable if and only if \# of CCW encirclement of the origin in the Nyquist plane by $\Gamma_{1+L}=$ \# of open loop unstable poles

Nyquist Stability Criterion

If $L(s)=k G(s)$, then
closed loop system is stable if and only if
\# of CCW encirclement of $(-1 / k, 0)$ in the Nyquist plane by $\Gamma_{G}=$ \# of open loop unstable poles

Example

$$
G(s)=\frac{s+2}{s^{2}-1}
$$

$G(j \omega)=\frac{j \omega+2}{-\omega^{2}-1}$
$\operatorname{Re} G(j \omega)=-\frac{2}{1+\omega^{2}}$
$\operatorname{Im} G(j \omega)=-\frac{\omega}{1+\omega^{2}}$

When $\omega=-\infty, G(j \omega)=0$.
When $\omega<0, \operatorname{Im} G(j \omega)>0$
When $\omega>0, \operatorname{Re} G(j \omega) \rightarrow-2$
$\omega>0$ case is the mirror image
Closed loop is stable
$\Leftrightarrow-2<-\frac{1}{k}<0 \Leftrightarrow k>\frac{1}{2}$
Check:
$\operatorname{num}(1+k G(s))=s^{2}-1+k(s+2)$
MATLAB command: nyquist(G);

Gain/Phase Margins

Nominal value of $\alpha=1$.
To evaluate the stability margin (how much α can vary), check the Nyquist plot of GK:

Example

$$
G(s)=\frac{s+2}{s^{2}-1}
$$

$$
G(s)=\frac{1}{s^{3}+2 s^{2}+2 s+1}
$$

Nominal feedback gain $\boldsymbol{k}=\mathbf{1}$

max gain: $1 / 2=0.5=-6 \mathrm{~dB} \mathrm{GM}$

max gain: $1 / .332=3.01=9.6 \mathrm{~dB} \mathrm{GM}$

Zero on the imaginary axis

$$
G(s)=\frac{1}{s(s+1)^{2}} \quad G(j \omega) \rightarrow \infty \text { as } \omega \rightarrow 0 \text { so Nyquist plot becomes unbounded. }
$$

which direction does the plot go at infinity?

$$
\rho \rightarrow 0
$$

$$
\begin{aligned}
& G(s)=\frac{1}{s(s+1)^{2}} \approx \frac{1}{s} \text { for } s \approx 0 \\
& G\left(\rho e^{j \phi}\right) \approx \rho^{-1} e^{-j \phi}
\end{aligned}
$$

Zero on the imaginary axis

$$
\begin{aligned}
& G(s)=\frac{1}{s(s+1)^{2}} \approx \frac{1}{s} \text { for } s \approx 0 \\
& G\left(\rho e^{j \phi}\right) \approx \rho^{-1} e^{-j \phi} \\
& \phi:-\frac{\pi}{2} \rightarrow 0 \rightarrow \frac{\pi}{2} \\
& e^{-j \phi}: j \rightarrow 1 \rightarrow-j
\end{aligned}
$$

Zero on the imaginary axis

$$
\begin{aligned}
& G(s)=\frac{1}{s(s+1)^{2}} \approx \frac{1}{s} \text { for } s \approx 0 \\
& G\left(\rho e^{j \phi}\right) \approx \rho^{-1} e^{-j \phi} \\
& \phi: \frac{3 \pi}{2} \rightarrow \pi \rightarrow \frac{\pi}{2} \\
& e^{-j \phi}: j \rightarrow-1 \rightarrow-j
\end{aligned}
$$

Systems with Z=P

For strictly proper loop gain $L(s)$ (more poles than zeros), we only need to evaluate the Nyquist plot for $s=j \omega$ since $L(s) \rightarrow 0$ as $\omega \rightarrow \pm \infty$. When $L(s)$ has the same \# of poles and zeros, this is no longer true. In this case, write $L(s)$ as a constant + strictly proper transfer function. Plot the Nyquist plot of $L(s)$ and shift the plot by the constant.

$$
G(s)=\frac{s(s+2)}{\left(s^{2}+2 s-1\right)}=1+\frac{1}{s^{2}+2 s-1}
$$

Exercise 11

Consider the lead filter $K_{\text {lead }}(s)=300(s+4) /(s+30)$ applied to the plant $G(s)=1 / s(s+a)$:

- Do the Nyquist plot of $G(s)$ by hand and compare with the MATLAB generated Nyquist plot.
- Use the MATLAB generated Nyquist plot for $G(s) K_{\text {lead }}(s)$ to evaluate the gain and phase margins. Compare with the results from using the Bode plot.

