Today (10/26/01)

- Today
 - Walk through the lead filter design exercise 10
 - Nyquist plot
 - Ref. 6.3
- Reading Assignment: 6.5

Given G(s):

- Determine open loop gain K to meet low freq gain requirement (KG(0)) and/or bandwidth requirement (BW KG(s) about ½ of desired closed loop BW). Gain crossover freq=w_{cg}.
- Evaluate PM of KG(s). Determine extra phase lead needed, set it to \mathbf{f}_{\max} .
- Determine **a**. Find the new gain crossover freq \mathbf{w}_{cg1} $KG(j\mathbf{w}_{cg1}) = (\sqrt{a})_{dB}$
- Let $\mathbf{w}_{\text{max}} = \mathbf{w}_{\text{cg1}}$ and solve for T.
- Check PM, BW of $G(s)K_{lead}(s)$ and iterate if necessary.
- Check all other specifications, and iterate design; add more lead compensators if necessary.

Given $G(s)=1/(s^2+as)$:

 Determine open loop gain K to meet low freq gain requirement (KG(0)) and/or bandwidth requirement (BW KG(s) about ½ of desired closed loop BW). Gain crossover freq=w_{cq}.

• Evaluate PM of KG(s). Determine extra phase lead needed, set it to ϕ_{max} .

Target PM=60deg, so we need 35deg need filter.

Add 5 deg extra pad.

$$f_{\text{max}} = 40 \text{deg} = .684 \text{rad}$$

$$a = .225$$

extra gain from lead filter at w_{max}

$$= \left(\sqrt{a}\right)_{dB} = 6.47 dB$$

• Determine α . Find the new gain crossover freq \mathbf{w}_{cq1}

ne New crossover freques @ 7.5rad/sec.

Substitute $w_{\text{max}} = 7.5 \text{rad/sec}$ into

$$T = \int_{\mathbf{w}_{\text{max}}} \sqrt{\mathbf{a}}$$

we get T = .28

Overall lead filter:

$$K_{lead}(s) = 124.2 \frac{s + 3.56}{s + 15.79}$$

• Check PM, BW of $G(s)K_{lead}(s)$ and iterate if necessary.

Not quite meeting the spec, so iterate!

Change
$$\mathbf{f}_{\text{max}} = 50^{\circ}$$
 and $\mathbf{w}_{\text{max}} = 10 \text{rad/sec}$

Overall lead filter:

$$K_{lead}(s) = 202.4 \frac{s + 3.72}{s + 26.89}$$

• Check PM, BW of $G(s)K_{lead}(s)$ and iterate if necessary.

More PM than we need, so increase the gain a bit.

Overall lead filter:

$$K_{lead}(s) = 303.7 \frac{s + 3.72}{s + 26.89}$$

Principle of Argument

Let Z=# of zeros of F(s) enclosed by G, P=# of poles of F(s) enclosed by G.

Then # of counterclockwise (CCW) encirclement of origin of F-plane by $F(\mathbf{G}) = P$ -Z

Nyquist Stability Criterion

Choose:

- G encloses the entire right half complex plane
- F(s)=1+L(s)

Then

- Z = # of unstable zeros of 1+L(s)
 - = 0 if the closed loop system is stable
- P = # of unstable poles of 1+L(s)
 - = # of open loop unstable poles (# of unstable poles in L(s))

From the Principle of Argument,

closed loop system is stable if and only if

of CCW encirclement of the origin in the Nyquist plane by \mathbf{G}_{1+L} = # of open loop unstable poles

Nyquist Stability Criterion

If L(s) = k G(s), then

closed loop system is stable if and only if # of CCW encirclement of (-1/k,0) in the Nyquist plane by $G_G = \#$ of open loop unstable poles

Example

$$G(s) = \frac{s+2}{s^2 - 1}$$

$$G(jw) = \frac{jw + 2}{-w^2 - 1}$$

$$\operatorname{Re} G(j\mathbf{w}) = -\frac{2}{1+\mathbf{w}^2}$$

$$\operatorname{Im} G(j\mathbf{w}) = -\frac{\mathbf{w}}{1+\mathbf{w}^2}$$

When $w = -\infty$, G(jw) = 0.

When w < 0, Im G(jw) > 0

When w > 0, Re $G(jw) \rightarrow -2$

w > 0 case is the mirror image

Closed loop is stable

$$\Leftrightarrow$$
 $-2 < -\frac{1}{k} < 0 \Leftrightarrow k > \frac{1}{2}$

Check:

$$num(1+kG(s)) = s^2 - 1 + k(s+2)$$

MATLAB command:

nyquist(G);

Gain/Phase Margins

Nominal value of a=1.

To evaluate the stability margin (how much a can vary), check the Nyquist plot of *GK*:

Example

$$G(s) = \frac{s+2}{s^2-1}$$

$$G(s) = \frac{1}{s^3 + 2s^2 + 2s + 1}$$

Nominal feedback gain k=1

max gain: 1/2=0.5=-6dB GM

max gain: 1/.332=3.01=9.6dB GM

Zero on the imaginary axis

$$G(s) = \frac{1}{s(s+1)^2}$$

 $G(s) = \frac{1}{s(s+1)^2}$ $G(jw) \to \infty$ as $w \to 0$ so Nyquist plot becomes unbounded.

which direction does the plot go at infinity?

$$G(s) = \frac{1}{s(s+1)^2} \approx \frac{1}{s} \text{ for } s \approx 0$$

$$G(re^{jf}) \approx r^{-1}e^{-jf}$$

Zero on the imaginary axis

$$G(s) = \frac{1}{s(s+1)^2} \approx \frac{1}{s} \text{ for } s \approx 0$$

$$G(re^{jf}) \approx r^{-1}e^{-jf}$$

$$f:-\frac{p}{2}\to 0\to \frac{p}{2}$$

$$e^{-jf}: j \to 1 \to -j$$

Zero on the imaginary axis

$$G(s) = \frac{1}{s(s+1)^2} \approx \frac{1}{s} \text{ for } s \approx 0$$

$$G(re^{jf}) \approx r^{-1}e^{-jf}$$

$$f: \frac{3p}{2} \to p \to \frac{p}{2}$$

$$e^{-jf}: j \rightarrow -1 \rightarrow -j$$

Systems with Z=P

For strictly proper loop gain L(s) (more poles than zeros), we only need to evaluate the Nyquist plot for $s=j_{\omega}$ since $L(s)\otimes 0$ as $_{\omega}\otimes \pm \Psi$. When L(s) has the same # of poles and zeros, this is no longer true. In this case, write L(s) as a constant + strictly proper transfer function. Plot the Nyquist plot of L(s) and shift the plot by the constant.

$$G(s) = \frac{s(s+2)}{(s^2+2s-1)} = 1 + \frac{1}{s^2+2s-1}$$

Exercise 11

- Consider the lead filter $K_{lead}(s)=300(s+4)/(s+30)$ applied to the plant G(s)=1/s(s+a):
- Do the Nyquist plot of G(s) by hand and compare with the MATLAB generated Nyquist plot.
- Use the MATLAB generated Nyquist plot for $G(s)K_{lead}(s)$ to evaluate the gain and phase margins. Compare with the results from using the Bode plot.