

Examples of Materials Indices							
Function, Objective, and Constraint	Index						
Tie, minimum weight, stiffness	Ε/ρ						
Beam, minimum weight, stiffness	$E^{1/2}/\rho$						
Beam, minimum weight, strength	$\sigma^{2/3}/\rho$						
Beam, minimum cost, stiffness	$E^{1/2}\!/\!C_m\!\rho$	C _m =cost/mass					
Beam, minimum cost, strength	$\sigma^{2/3}/C_m\rho$						
Column, minimum cost, buckling load	$E^{1/2}/C_m\rho$						
Spring, minimum weight for given energy storage	${\sigma_{YS}}^2/E\rho$						
Thermal insulation, minimum cost, heat flux	$1/(\alpha C_m \rho)$	α =thermal cond					
Electromagnet, maximum field, temperature rise	$\kappa C_p \rho$	$\kappa = elec. cond$					
M.S.E Illinois MatSE 280: Introduction to Engineering Materials &	D.D. Johnson 2004	I					

	Design & Selection: Materials Indices
PF	ERFORMANCE: (using separable form) $P = f_1(F) f_2(G) f_3(M)$
W	 hen separable, the optimum subset of materials can be identified without solving the complete design problem, knowing details of F and G.
	here is then enormous simplification and performance can be trimized by focusing on $f_3(M)$, which is the materials index
	S= safety factor should always be included!

Considering mass	Table 23.1 Density (Five Engineering Mat		erformance l	ndex (P) for	
Considering mass	Material	(Mg/m^2)	(MPa)	$\tau_f^{23}/\rho = P$ [(MPa) ²⁵ m ³ /Mg]	
Maximize:	Carbon fiber-reinforced c posite (0.65 fiber fracti		1140	72.8	
$\mathbf{M} = \mathbf{\tau}^{2/3} / \mathbf{\rho}$	Glass fiber-reinforced con ite (0.65 fiber fraction)		1060	52.0	
	Aluminum alloy (2024-Te	(6) 2.8	300	16.0	
	Titanium alloy (Ti-6Al-4)	W) 4.4	525	14.8	
CRFP are best!	4340 Steel (oil-quenched tempered)	and 7.8	780	10.9	
	" The fibers in these com a 45" angle relative to the	e shaft axis.			
Considering	" The fibers in these com	e shaft axis. e ρ/τ _j ²⁵ Ratio, Relative eering Materials*	Cost (7), and	the Product M	[= τ ^{2/3} /C ₁
Considering (Cost/mass)*mass	⁴ The fibers in these com a 45° angle relative to the Table 23.2 Tabulation of the	e shaft axis. e ρ/τ ²³ Ratio, Relative		the Product	
(Cost/mass)*mass	⁴ The fibers in these compa 45° angle relative to the Table 23.2 Tabulation of the of ρ/τ_f^{22} and \bar{c} for Five Engine	e shaft axis. e ρ/τ_f^{23} Ratio, Relative eering Materials* ρ/τ_f^{23}	Cost (7), and	the Product $\frac{M}{\overline{c}(\mu/\tau^{22})}$	22x10
(Cost/mass)*mass Maximize:	Table 23.2 Tabulation of the of $\rho/\tau_{f^{2}}^{23}$ and \overline{c} for Five Engine Material 4340 Steel (oil-quenched and	te shaft axis. e ρ/τ_f^{23} Ratio, Relative eering Materials* ρ/τ_f^{23} $[10^{n_2} {Mg/(MPa)^{23}m^3}]$	c Cost (c), and c (8/8)	the Product $\overline{c}(\rho/\tau_{f}^{22})$ $ I\theta^{*2}(S/S)(Mg/(MPa$	⁾²⁵ m ³] 22x10 13x10
0	The flows in these compared by the flow of $\mu \tau \tau_{T}^{00}$ and τ_{T}^{00} and τ_{T}^{00} and τ_{T}^{00} for Five Engine Haterial 4340 Steel (oil-quenched and temperal) Glass fiber-reinforced compositions	e shaft axis. e ρ/τ_f^{23} Ratio, Relative eering Materials* ρ/τ_f^{23} $[10^{22} [Mg/(MPa)^{20}m^3]]$ 9.2	c Cost (ē), and ē (8/8) 5	the Product $\overline{c(p/\tau_{2}^{27})}$ $ I\theta^{u_{2}}(S/S) Mg/(MPa)$ 46	⁾²⁵ m ³] 22x10 13x10
(Cost/mass)*mass Maximize:	The fibers in these comparison of the optimization of the optimiz	the shaft axis. e ρ/τ_p^{23} Ratio, Relative eering Materials* ρ/τ_p^{23} $[10^{+2} \{M_{Z'}/(MPa)^{120}m^3\}]$ 9.2 1.9	Cost (7), and (8/8) 5 40	the Product $\overline{r(\rho/\tau_{f}^{20})}$ $[10^{22} (S/S)]Mg/(MPa)$ 46 76	^{]25} m ³]] 22x10

Example 6: Selecting a Slender	but strong Table Leg
(Note this uses previous example from Ashby.)	
Luigi Tavolina, furniture designer, conceives o with a flat toughened glass top on slender, unt For attractiveness, legs must be solid (to be th table easy to move). Legs must support table	praced, cylindrical legs. in) and light as possible (to make
• What material would you recommend t	o Luigi?
	oad: - Mass of leg:
$F \le \pi^2 \frac{EI}{L^2} = \pi^3 \frac{E}{4}$	$\frac{R^4}{L^2} \qquad m = \rho \pi R^2 L$
 Eliminate the "free" de 	sign parameter, <mark>R</mark> :
$\mathbf{m} \ge \left(\frac{4\mathbf{P}}{\pi}\right)^{1/2} \left(\mathbf{L}^2\right) \left \frac{\mathbf{\rho}}{ \mathbf{E}^{1/2} }\right $	$\underbrace{\text{Maximize}}_{\text{Maximize}} M_1 = \begin{bmatrix} \frac{E^{1/2}}{\rho} \end{bmatrix}$
 For slenderness, get 	R for Critical Load Eq.:
$r = \left(\frac{4P_{crit}}{\pi^3}\right)^{1/4} \left(L^{1/2}\right) \left(\frac{1}{E}\right)^{1/4}$	$M_2 = E$
(,,,),,(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 indices to meet
Masse Matse 280: Introduction to Engineering Materials	©D.D. Johnson 2004

	In	dice	es F	or A	Coi	l Ma	ateri	ial		
•	From Appendice	s B a	nd C,	Callis	ter 6e:					
	Material 1020 steel (an) 1100 Al (an) 7075 Al (T6) 11000 Cu (an) 17200 Be-Cu (st) 71500 Cu-Ni (hr) Pt Ag (an) Ni 200 units	or 395 90 572 220 475 380 145 170 462 MPa	2.80 8.89 8.25 8.94 21.5 10.5	\$ 0.8 12.3 13.4 7.9 51.4 12.9 1.8e4 271 31.4 ³ -	380 132 235 456	0.17 0.57 3.75 1.06 0.15 0.95	P1 50 33 204 25 58 43 7 16 52 σ _f /ρ _d	$\begin{array}{c} P_2 \\ 2 \\ 21 \\ 15 \\ 5 \\ 3 \\ 1 \\ 19 \\ <1 \\ 2 \\ (c_v/\rho_e)^{0.5} \end{array}$	C1 63 3 15 3 1 3 <1 <1 2 P1/\$	C2 2.5 1.7 1.1 0.6 <0.1 <0.1 <0.1 <0.1 <0.1 P2/\$
	Avg. values used. an = annealed; T6 = heat treated & aged; st = solution heat treated; hr = hot rolled									
	Lightest for a given H: 7075 AI (T6) ← P1 Lightest for a given H(∆t) ^{0.5} : 1100 AI (an) ← P2									
	 Lowest cost Lowest cost 								C1 C2	Ŵ
M.S.E Illinois	MatSE 280: Introduction	to Engi	neering	Materials		©D.I). Johnso	n 2004		1

