## Class 6: Inventory Lecture



Trade-off: Inventory Cost Vs. Service Level

## From the Trenches...

Too much:

- Liz Claiborne experiences "unexpected earnings decline as a consequence of 'higher-than-expected excess inventories'" - Agins, Teri. "Liz Claiborne Seems to Be Losing Its Invisible Armor," The Wall Street Journal, July 19 1993.
- "On Tuesday, the network-equipment giant Cisco provided the grisly details behind its astonishing $\$ 2.25$ billion inventory write-off in the third quarter" - Barrett, Larry. "Cisco's \$2.25 Billion Mea Culpa," News.com, May 9 2001, http://cnet.news.com (accessed June 3, 2004).

Too little:

- IBM struggles with shortages in ThinkPad line due to ineffective inventory management - Hays, Laurie. "IBM to Slash Prices Up to $27 \%$ on Business PCs," The Wall Street Journal, August 241994.
- "Since 1990 we have designated the Department of Defense's management of its inventory, including spare parts, as high risk because [...] its management systems and procedures were ineffective." - US General Accounting Office. "Army Inventory: Parts Shortages Are Impacting Operations and Maintenance Effectiveness," August 2001.


## Why Inventory Costs Money

- Cost of (stuck) capital
- Obsolescence
- Storage
- Insurance
- Security
- Theft (Shrinkage)

Typical per annum inventory holding cost:

## Financial Inventory Metrics

Inventory Turns $=\frac{\text { COGS } \uparrow---- \text { Earnings or P \& L }}{\text { Inventory Value } \uparrow--- \text { Balance sheet }}$
Inventory Cost $/$ Unit $=\frac{\text { Inventory Value } \mathrm{x} \text { Holding Cost }}{\text { COGS }}=\frac{\text { Holding Cost }}{\text { Inventory Turns }}$

Example: 10k filings, 2002 (\$M)

Wal Mart Stores Inc.
Kmart Corp.
Inventory
\$22,749
\$4,825
C.O.G.S
\$171,562
\$26,258

## Why Hold Inventory? How Much?

Type of Inventory

Safety Inventory

Cycle Inventory

Seasonal Inventory

Speculative Inventory

In-Process/Pipeline Inventory
Marketing/Shelf Inventory (Retail)

Decision Tool

Newsboy Model

EOQ Model

Buildup Diagram

Finance

Little's Law

Experience

## Economic Order Quantity Model

- Set order size for repetitive ordering process with fixed order cost
- Trade-off:
- Order size too large (too much average inventory) versus
- Order size too small (too much ordering cost)
- Examples:
- Ordering/Inventory replenishment policy;
- Batch size on machine with setup time...


## Running to the Store a Lot...



## ...Vs. Running to the Store a Little

Mon $\square$ Tue $\square$ Wed $\square$ Thu $\square$ Fri $\square$ Sat $\square$ Sun $\square$


2002 - Jérémie Gallien
Slide courtesy of Prof. Thomas Roemer, MIT.

## EOQ Model Parameters

- $\mathbf{Q}=$ Order Quantity
decision
- $\mathrm{D}=$ Demand Rate (units/time)
- C = Purchasing Cost (\$/unit)
parameters
- F = Fixed Order Cost (\$)
- H = Inventory Holding Cost (\% p.a.)

Assumptions: - constant, deterministic demand

- instantaneous replenishment


## EOQ Model Derivation

- Inventory Cost $H \cdot \frac{C \cdot Q}{2}$; Order Cost $F \cdot \frac{D}{Q}$;
- Total Cost $\quad V=F \cdot \frac{D}{Q}+C \cdot H \cdot \frac{Q}{2}$



## EOQ Formula

- Set first derivative to 0 : $\frac{\partial V}{\partial Q}=-\frac{D F}{Q^{2}}+\frac{C H}{2}=0$
- This yields:

$$
Q^{*}=\sqrt{\frac{2 \cdot D F}{C H}}
$$

## EOQ Example

A PC assembly operation procures its 128 Mb memory chips at $\$ 45$ each (purchase + shipment cost) from a foreign vendor; in addition each order also costs $\$ 500$ in customs fees. Assuming a constant demand of 400 chips per week and an inventory holding cost of $45 \%$, how often would you order?

## Newsvendor Model

- One time decision under uncertainty
- Trade-off:
- Ordering too much (waste, salvage value < cost) versus
- Ordering too little (excess demand is lost)
- Examples:
- Restaurant;
- Fashion;
- High Tech;
- Inventory decisions...


## Christmas Tree Problem



## Ordering Too Many...




## ...Versus Ordering Too Few



## Newsvendor Model Parameters

- q = Order Quantity
decision
- c = Unit Cost
- $r=$ Unit Revenue
- b = Unit Salvage Value

parameters ( $\mathrm{r}>\mathrm{c}>\mathrm{b}$ )
- $d=$ Demand (unknown)
random variable


## Newsboy Objective

IF d > q
(demand > quantity ordered)

Opportunity cost:

$$
(r-c) \times(d-q)
$$

IF $q>d$
(quantity ordered $>$ demand)

Disposal cost:

$$
(c-b) \times(q-d)
$$

Objective:
minimize expected opportunity + disposal cost

## Model Derivation

$$
\text { - IF d > q } \quad \text { IF d }<\mathbf{q}
$$

(demand > order qty)

$$
q \cdot(r-c)
$$

Profit:

## (demand < order qty)

$d \cdot(r-c)+(q-d) \cdot(b-c)$
Incremental Analysis: $\quad q \rightarrow q+1$ :
$\Delta$ Profit: $r-c$

$$
b-c
$$

EAP:

$$
P(d>q) \cdot(r-c)+P(d \leq q) \cdot(b-c)
$$

As long as the Expected Additional Profit [EAP] is positive, it is lucrative to increase $q$ to $q+1$ !!!

## Newsvendor Formula

$$
P\left(d<q^{*}\right)=\frac{r-c}{r-b}=\frac{r-c}{\underbrace{(r-c)}_{\substack{\text { costof } \\ \text { under- } \\ \text { stocking }}}+\underbrace{c-b)}_{\substack{\text { cost of } \\ \text { over- } \\ \text { stocking }}}}=\frac{u}{u+o}
$$



Remark: If d is $\operatorname{Normal}(\mu, \sigma)$,

$$
\mathrm{q}^{*}=\mu+\mathrm{k} \cdot \sigma \quad \text { with }
$$

$$
\begin{array}{lll}
\alpha=95 \% & \rightarrow & k=1.64 \\
\alpha=99 \% & \rightarrow & k=2.32 \\
\alpha=99.9 \% & \rightarrow & k=3.09
\end{array}
$$

Demand Distribution

## Newsvendor Example

Based on forecasts and marketing studies you are expecting a total lifecycle demand $N(60,000 ; 20,000)$ for a new product due to launch in the future. The product has a gross margin of $\$ 750$ and a liquidation/disposal cost (for unsold inventory) of $\$ 250$. Because of long lead-times you must commit orders to supplier for the entire product life-cycle now. How much should you order?

## Continuous Review System

$\longrightarrow$ "order Q whenever inventory reaches R "
Inventory
LT = Lead Time
EDDLT = Expected Demand During Lead Time
(Actual) Demand During Lead Time
2002 - Jérémie Gallien

## (R,Q) Parameters

"order Q whenever inventory reaches R"

- Set Q as the EOQ solution
- Set R as the newsboy solution:

$$
P(D D L T<R)=\alpha
$$

where $\alpha$ is a desired service level (e.g. 95\%)

Example (cont'd): if weekly demand for 128 Mb chips is in fact $\mathbf{N}(400,80)$ and delivery time is 2 weeks, for a $95 \%$ service level:

## Periodic Review System

$\longrightarrow$ "order back to S every T time units"


LT = Lead Time
T = Cycle Time or Review Period DDLT = Actual Demand During Lead Time
Qi $=$ Order Size
S = Order Up To Level

## (S,T) Parameters

"order back to S every T time units"

- Set T as the EOQ solution divided by the demand rate
- Set S as the newsboy solution:

$$
P(\text { DDLTRP < S })=\alpha
$$

where: $\quad-\alpha$ is the desired service level (e.g. 95\%)

- DDLTRP = Demand During Lead-Time and Review Period


## Safety Stock Formula

- Under periodic and review systems, safety stock SS (under normally distributed demand) is given by:



## Class 6 Wrap-Up

1. Financial inventory metrics: inventory turns, per unit inventory cost
2. Functions of inventory: seasonal, cyclical, safety, speculative, pipeline, shelf
3. EOQ \& newsboy models
4. Continuous and discrete replenishment policies, safety stock formula
