

Trade-off: Inventory Cost Vs. Service Level

From the Trenches...

Too much:

- Liz Claiborne experiences "unexpected earnings decline as a consequence of 'higher-than-expected excess inventories'" – Agins, Teri. "Liz Claiborne Seems to Be Losing Its Invisible Armor," *The Wall Street Journal*, July 19 1993.
- "On Tuesday, the network-equipment giant Cisco provided the grisly details behind its astonishing \$2.25 billion inventory write-off in the third quarter" Barrett, Larry. "Cisco's \$2.25 Billion Mea Culpa," *News.com*, May 9 2001, http://cnet.news.com (accessed June 3, 2004).

Too little:

- IBM struggles with shortages in ThinkPad line due to ineffective inventory management Hays, Laurie. "IBM to Slash Prices Up to 27% on Business PCs," The Wall Street Journal, August 24 1994.
- "Since 1990 we have designated the Department of Defense's management of its inventory, including spare parts, as high risk because [...] its management systems and procedures were ineffective." – US General Accounting Office. "Army Inventory: Parts Shortages Are Impacting Operations and Maintenance Effectiveness," August 2001.

Why Inventory Costs Money

- Cost of (stuck) capital
- Obsolescence
- Storage
- Insurance
- Security
- Theft (Shrinkage)

Typical per annum inventory holding cost:

Financial Inventory Metrics

Example: 10k filings, 2002 (\$M)

	Wal Mart Stores Inc.	Kmart Corp.
Inventory	\$22,749	\$4,825
C.O.G.S	\$171,562	\$26,258

Why Hold Inventory? How Much?

Type of Inventory	Decision Tool
Safety Inventory	Newsboy Model
Cycle Inventory	EOQ Model
Seasonal Inventory	Buildup Diagram
Speculative Inventory	Finance
In-Process/Pipeline Inventory	Little's Law
Marketing/Shelf Inventory (Retail)	Experience

Economic Order Quantity Model

- Set order size for repetitive ordering process with fixed order cost
- Trade-off:
 - Order size too large (too much average inventory) versus
 - Order size too small (too much ordering cost)
- Examples:
 - Ordering/Inventory replenishment policy;
 - Batch size on machine with setup time...

Running to the Store a Lot...

Inventory

2002 - Jérémie Gallien

EOQ Model Parameters

• Q = Order Quantity

decision

- D = Demand Rate (units/time)
- C = Purchasing Cost (\$/unit)

parameters

- F = Fixed Order Cost (\$)
- H = Inventory Holding Cost (% p.a.)

- Assumptions: constant, deterministic demand
 - instantaneous replenishment

EOQ Model Derivation

• Inventory Cost
$$H \cdot \frac{C \cdot Q}{2}$$
; Order Cost $F \cdot \frac{D}{Q}$;

• Total Cost
$$V = F \cdot \frac{D}{Q} + C \cdot H \cdot \frac{Q}{2}$$

EOQ Formula

• Set first derivative to 0:

$$\frac{\partial V}{\partial Q} = -\frac{DF}{Q^2} + \frac{CH}{2} = 0$$

• This yields:

$$Q^* = \sqrt{\frac{2 \cdot DF}{CH}}$$

EOQ Example

A PC assembly operation procures its 128Mb memory chips at \$45 each (purchase + shipment cost) from a foreign vendor; in addition each order also costs \$500 in customs fees. Assuming a constant demand of 400 chips per week and an inventory holding cost of 45%, how often would you order?

Newsvendor Model

- One time decision under uncertainty
- Trade-off:
 - Ordering too much (waste, salvage value < cost) versus
 - Ordering too little (excess demand is lost)
- Examples:
 - Restaurant;
 - Fashion;
 - High Tech;
 - Inventory decisions...

Christmas Tree Problem

Ordering Too Many...

2002 - Jérémie Gallien

...Versus Ordering Too Few

2002 - Jérémie Gallien

Newsvendor Model Parameters

d = Demand (unknown)

random variable

Newsboy Objective

<u>IF d > q</u> (demand > quantity ordered)

Opportunity cost: $(r - c) \times (d - q)$ <u>IF q > d</u> (quantity ordered > demand)

Disposal cost: (c – b) x (q – d)

Objective:

minimize expected opportunity + disposal cost

Model Derivation

	• IF d > q	• IF d < q	
(demand > order qty)		(demand < order qty)	
Profit:	$q \cdot (r - c)$	$d \cdot (r-c) + (q-d) \cdot (b-c)$	
Incremental Analysis: $q \rightarrow q + 1$:			
Δ Profit:	r - c	b - c	
EAP:	$P(d > q) \cdot (r - c)$	$P(d > q) \cdot (r - c) + P(d \le q) \cdot (b - c)$	

As long as the *Expected Additional Profit* [EAP] is positive, it is lucrative to increase *q* to *q* + 1 !!!

2002 - Jérémie Gallien

Newsvendor Formula

2002 - Jérémie Gallien

Newsvendor Example

Based on forecasts and marketing studies you are expecting a total lifecycle demand N(60,000;20,000) for a new product due to launch in the future. The product has a gross margin of \$750 and a liquidation/disposal cost (for unsold inventory) of \$250. Because of long lead-times you must commit orders to supplier for the entire product life-cycle now. How much should you order?

Continuous Review System

"order Q whenever inventory reaches R"

2002 - Jérémie Gallien

Slide courtesy of Prof. Thomas Roemer, MIT.

(R,Q) Parameters

- Set Q as the EOQ solution
- Set **R** as the newsboy solution:

 $P(DDLT < R) = \alpha$

where α is a desired service level (e.g. 95%)

Example (cont'd): if weekly demand for 128Mb chips is in fact N(400,80) and delivery time is 2 weeks, for a 95% service level:

Periodic Review System

2002 - Jérémie Gallien

(S,T) Parameters

"order back to S every T time units"

- Set T as the EOQ solution divided by the demand rate
- Set S as the newsboy solution:

 $P(DDLTRP < S) = \alpha$

 where: - α is the desired service level (e.g. 95%)
DDLTRP = Demand During Lead-Time and Review Period

Safety Stock Formula

 Under periodic and review systems, safety stock SS (under normally distributed demand) is given by:

Class 6 Wrap-Up

- 1. Financial inventory metrics: inventory turns, per unit inventory cost
- 2. Functions of inventory: seasonal, cyclical, safety, speculative, pipeline, shelf
- 3. EOQ & newsboy models
- 4. Continuous and discrete replenishment policies, safety stock formula