Class 3: Capacity Lecture

Typical Questions

- How many machines should be purchased?
- How many workers should be hired?
- Consequences of a 20% increase in demand?
- How many counters should be opened to maintain customer wait below 10 minutes?
- How many assembly stations are needed to maintain backorders below 20?
- How often will all 6 operating rooms be full?
- How will congestion at Logan change if a 5th runway is built?

Methodology

Step 1: Process Flow Diagram

Step 2: Demand/Capacity Analysis

For each process step i, determine:

- λ_i : demand or input rate (in units of work per unit of time)
- μ_i : realistic maximum service rate, assuming no idle time (in units of work per unit of time)

 $\rho_i = \lambda_i / \mu_i$: capacity utilization $\lambda_i - \mu_i$: build-up rate

$$\lambda_2 = \min(\lambda_1, \mu_1)$$

Step 3: Congestion Analysis

- L Inventory level/Queue size/Line length
- W Waiting time
- **C** Cycle time
- P_{full} Probability queue is full

- λ Arrival rate
- μ Service rate
- A Inter-arrival time distribution
- **S** Service time distribution
- **N** Number of servers
- **R** Queue/Buffer capacity

Congestion Analysis Tools

Build-Up Diagrams	Queueing Theory
 Predictable Variability Utilization > 1 o.k. Short Run Analysis Variable rates o.k. 	 Unpredictable Variability Utilization < 1 only Long Run Analysis Fixed rates only
 assumes workflow is continuous and deterministic 	 stochastic analysis with inter-arrival and service time distributions

All other cases

Simulation / Experiments

Buildup Diagrams

Think of work as being liquid

- Predictable Variability
- Utilization > 1 ok
- Short Run Analysis
- Variable rates ok

• No rocket science, but requires a little care

Buildup Example: Fish Processing

Freezer Inventory Diagram

Limited Storage Capacity

Queueing Theory

Sophisticated analysis (but easy formulas) predicting long-term impact of unpredictable variability on congestion.

- Unpredictable Variability
- Utilization < 1 only
- Long Run Analysis
- Fixed rates only

COVERED

- G/G/N queueing formula
- Little's law (flow balance)
- Managerial insights

A Deterministic Queue

A Queue with Bursty Arrivals

Next job arrives:

- after 15 sec. with probability 1/2
- after 1 min 45 sec. with probability 1/2

This model captures unpredictable variability

A Queue with Bursty Arrivals

Little's Law

 300 new MBA's/Year x 2 Years MBA = 600 students in Sloan

G/G/N Queueing Model

G/G/N Queueing Formula

Approximation with an infinite buffer size:

$$L = \frac{\rho^{\sqrt{2(N+1)}}}{1-\rho} \times \frac{C_A^2 + C_S^2}{2}$$

• The relationship between waiting time and capacity utilization is strongly non-linear!

Managing the Psychology of Queueing

- 1. Unoccupied time feels longer than occupied time
- 2. Process waits feel longer than in process waits
- 3. Anxiety makes waits seem longer
- 4. Uncertain waits seem longer than known, finite waits
- 5. Unexplained waits are longer than explained
- 6. Unfair waits are longer than equitable waits
- 7. The more valuable the service, the longer the customer will wait
- 8. Solo waits feel longer than group waits

Class 3 Wrap-Up

- 1. Inventory buildup diagrams and predictable variability
- 2. Little's law (systems in equilibrium) $L = \lambda x W$
- 3. Queueing theory and unpredictable variability
- 4. Non-linear relationship between W or L and ρ
- 5. Queue Psychology Management